A+ Certification Guide

Chapter 4 Power Supplies and System Cooling

Chapter 5 **Objectives**

Power Supplies:

- Describe the device that transforms AC power from the wall outlet into DC power that your computer can use.
- Describe the various form factors and voltage levels, and how to protect your power supply.

Power Protection Types:

Describe devices that can protect your computer from voltage extremes.

Troubleshooting Power Problems:

 Demonstrate how to troubleshoot complete failure and intermittent power supply problems that you might encounter.

System Cooling:

 Describe the various ways to cool your system, including fans and liquid cooling, and demonstrate how to monitor the system temperature.

Power Converter Power Supply Unit (PSU)

- Power converter is a more accurate term.
 - Converts AC 120v to DC 3.3v, 5v, and 12v as needed.
- PSU is important because:
 - No power = no computing!
 - Inconsistent/unpredictable power =
 - Poor read/writes to hard drive
 - Data corruption
 - Video delivery problems
 - System overheating
 - Catastrophic failure
- Not normally repairable:
 - Capacitors can cause serious injury.
 - Easier/safer/less expensive to replace the whole PSU.

Power Converter

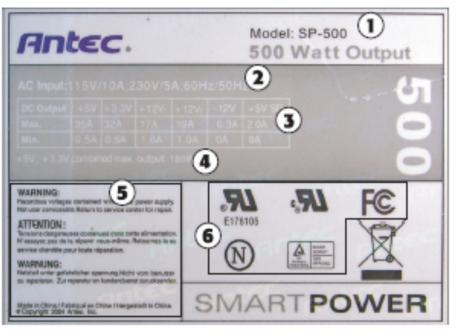


Figure 4-1

How Much Power?

- Bigger the PSU rating =
 - More expensive
- Too little power (overloaded) =
 - Poor performance (lost or corrupt data)
 - Spontaneous rebooting
 - Overheating

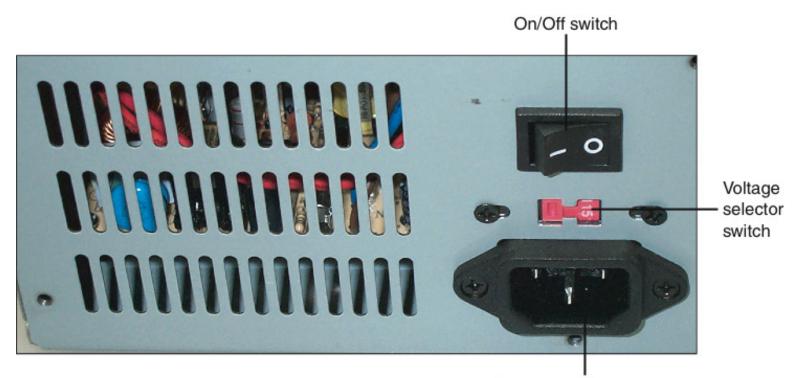
- 1. Power supply rating
- 2. AC input voltage levels
- DC output levels by type
- 3.3V and 5V output and peak output
- 5. Hazard warnings
- 6. Product certifications

How Much Power?

- 1. Add up the total wattage of the devices attached to the system.
- 2. Divide the total wattage by **.7.**
- 3. Round up to the next wattage PSU available.

Example:

- Assume your system uses 472 watts.
- 472 watts / .7 = 674 (That's *point* seven, not just seven.)
- Round up to 700 watts.
 - PSU units are often sold in increments of 50 watts.
 - In no case would you buy less than 674 watts.


CAUTION: If you plan to add more devices, account for them:

• Hard drives, second DVD, and second graphics card.

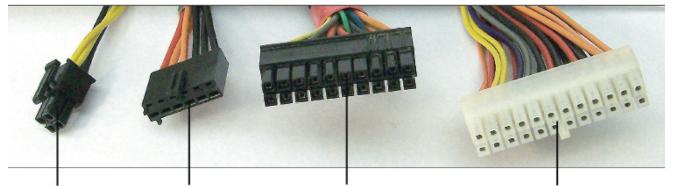
Power Converter Back Panel

PSU's capacity is rated in watts (volts x amps): European 240v versus North American 120v. Some units have an auto-detection feature. Must be set properly to avoid PSU failure.

AC power cord connection

Causes of Overheating

- Inadequate power supply wattage
- Failed fans:
 - Inside PSU
 - On CPU/GPU
 - Inside the case
- Blockage of vents:
 - Poor PC placement.
 - Dirty vents—intake or outtake
- Running in a room with high ambient temperature:
 - Greater than 85 degrees poses a risk.
 - Less than 75 degrees is recommended.



Power Supply Connectors


- From Power Supply to
 - Motherboard:
 - Large 20-pin or 24-pin ATX connector
 - Drives:
 - PATA and CD-ROM/DVD:
 - Four-pin Molex power connector
 - SATA:
 - L-shaped thin-line power connector
 - Floppy drive:
 - Mini Molex connector.
 - Fans:
 - Case fans use Molex connector.
 - Video cards—PCI E x16
 - PCI Express six-pin power cable.

PEARSON

Power Connectors

AUX secondary ATX12V secondary ATX primary (20-pin) ATX12V 2.2 primary (24-pin)

PEARSON

PSU Replacement Checklist

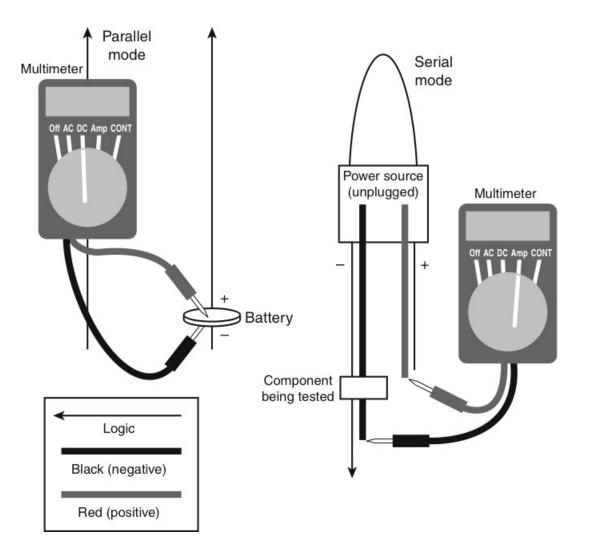
- Same power supply connectors and the same pinout as the original.
- ✓ Same form factor (shape, size, and switch location).
- Same or higher wattage rating; a higher wattage rating is highly desirable.
- Support any special features required by your CPU, video card, and motherboard, such as SLI support.

Testing the Power Supply

- Multimeters are designed to perform electrical tests, including:
 - DC voltage and polarity
 - AC voltage and polarity
 - Resistance (Ohms)
 - Diodes
 - Continuity
 - Amperage
- Red lead:
 - Attach to power source.
- Black lead:
 - Attach to ground.

Testing the Motherboard Power

Red probe from multimeter back-probing +12V line


DC voltage readout

Multimeter's mode selector switch set to DV voltage

Multimeter Circuit Testing

PEARSON

Troubleshooting Power Supplies

- Overheating:
 - Overloaded?
 - Fan failure?
- Spontaneous rebooting:
 - Incorrect voltage?
- Intermittent device failure:
 - Particularly of bus-powered USB devices
- Loud noises:
 - Fan failure imminent

Overheating Issues

- Overloaded PSU
- Fan Failure
- Inadequate Air Flow Outside the System (Room Temp)
- Inadequate Air Flow Inside the System
- Dirt and Dust

Troubleshooting Power Problems

Sources of Problems:

- Defects in AC power to the system:
 - Low voltage (<105v).
- Power supply failure or misconfiguration.
- Temporary short circuits in internal or external components:
 - Disconnected CPU fan.
- Power supply or other component failure.
 - Check for "electrical smell' from PSU

First Step: Identify the Problem:

- Is the problem with the external power source, or is it inside the case with the PSU or some subsystem?
 - Measure the source voltage. Is it >105 volts?
 - Check the AC voltage switch on the power supply; it should be set to 115V for North America.

Troubleshooting Power Problems

- Check for a loose keyboard connector (could cause a short circuit).
- Open the system and check for loose screws or other components, such as loose slot covers, modem speakers, or other metal items that can cause a short circuit.
- Verify that the cable from the front-mounted power switch is properly connected.
- Check for blown fuses on the motherboard (mainly found in old systems).
- Remove all expansion cards and disconnect power to all drives:
 - Restart the system, and use a multimeter to test power to the motherboard and expansion slots.
- Reinstall one card at a time and check the power:
 - If the power tests within accepted limits, reattach one drive at a time and check the power.
 - If a defective card or drive has a dead short, reattaching the defective card or drive should stop the system immediately upon power-up. Replace the card or drive and retest.

Power Protection

• Four problems often encountered:

- Overvoltages (spikes and surges)
- Undervoltages (brownouts)
- Power failure (blackouts)
- Noisy power (interference)

Protection from these problems can be mitigated with:

- Surge suppressors, which are also referred to as surge protectors
- Battery backup systems, which are also referred to as UPS or SPS systems
- Power conditioning devices

Surge Protectors

• Power spikes:

- Very momentary.
- Can hit voltage levels in the thousands

Power surges:

- Last longer than 1 second
- Lower voltage but potentially more damaging
- Surge protectors absorb extra voltage. Look for
 - TVSS (transient voltage surge suppressor) rating
 - Less than 400 volts
 - High joule rating
 - The more equipment plugged into it, the higher the joule rating needed.
 - Fast response time.
 - Warranty inclusion for lightning strikes.

Battery Backup Systems

Note the presence of battery backup receptacles versus surge only

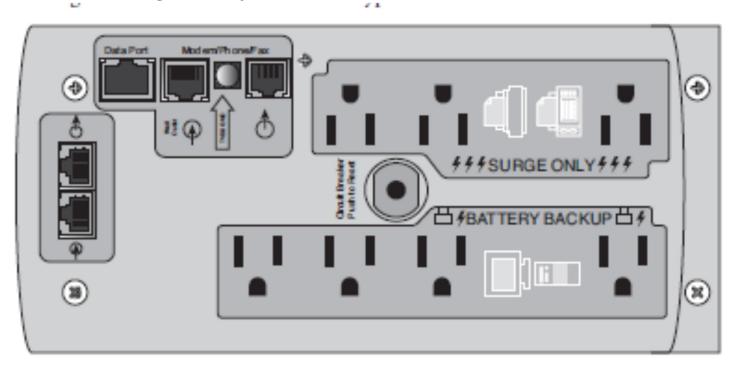


Illustration: This is a pick up of Figure 5-13 from "CompTIA A+ 220-701 and 220-702 Cert Guide" 2e (ISBN: 978-0-7897-4790-

PEARSON

Figure 4-17

04fig17

Battery Backup Systems UPS Versus SPS

UPS = Uninterruptible Power Supply:

- Power always comes from the battery.
- Charger keeps the battery supplied with power.
- Heavier and more expensive.
- Better line conditioning.
 - Longer computer equipment life.

SPS = Standby Power Supply:

- Power comes from the facility power.
- Backup battery is employed only if the facility power fails.
- Most SPS are also surge suppressors.

Note: Most SPS units in use are marketed as "UPS" units.

UPS—What to Look For

• Run times:

- The time a computer will keep running on power from the UPS.
- Longer runtime unit uses a bigger battery and costs more.
- Fifteen minutes is a minimum recommendation for a UPS for an individual workstation. Servers have a longer shutdown time.

Network support:

- Software can send a message to users about a shutdown so that users can save open files and close open applications.
- Shuts down the PC automatically before the battery runs down.

Automatic shutdown:

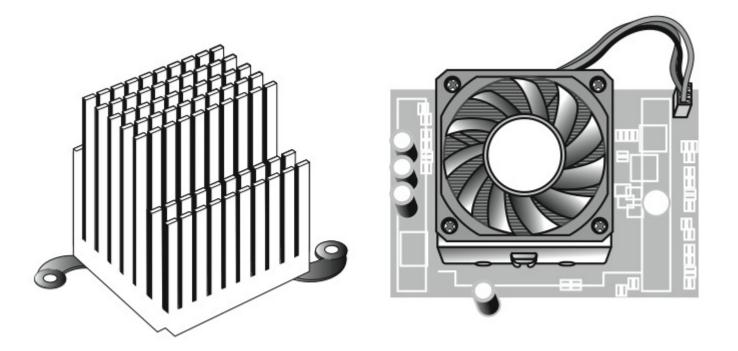
- Essential for servers or other unattended units.
- The automatic shutdown feature requires an available USB port and appropriate software from the UPS maker.

Surge suppression features:

– Look for Category A rating (UL-1449 and IEEE-587).

Correctly Sizing the UPS

- UPS is rated using "volt-amps" (VA):
 - Larger VA enables longer runtime.
 - Inadequate VA causes loss of data.
- Example:
 - Multiply the power supply wattage x 1.4.
 - Multiply the monitor wattage x 1.4.
 - Add them together. This is the minimum size needed.
 - Note: Doubling this number can triple the runtime.
- Pay attention to the outlets on the UPS. Many UPS units have both outlets that are on the battery backup system and outlets that are surge protected-only.
 - Do not attach printers or unnecessary devices to the UPS outlets on battery backup systems.
 - Reduces runtime significantly.



System Cooling

- Faster CPU = bigger PSU = more heat:
 - Overheating causes component and system failure.
- Active versus passive cooling:
 - Active: Use of powered device to move heat:
 - Typically fans.
 - Liquid cooling also available.
 - Passive: Use of heat sinks to draw heat away:
 - No moving parts—never fails.
- Because active heat sinks are more effective, they are more useful on devices where more heat is generated.
 - Downside: Any active device can be prone to fail.
 - Newer passive devices use heat pipes to draw heat away from the onboard northbridge and southbridge chipsets.

Passive Versus Active Cooling

Case Fans

- Normally, at least two case fans:
 - Front-side case fan draws air in.
 - Rear case fan pushes air out.
- The PSU also has a fan that draws air out of the case and exhausts it near the top where most hot air migrates:
 - Case fan sizes are typically 80mm to 120mm.
 - Larger sizes can move more air with slower rotation:
 - Less noise.
 - Better cooling capacity.
 - Newer case fans are temperature-sensitive:
 - Adjust fan speed for inside case temperature.

BIOS Temperature Monitor

CPU (processor) fan speed		
CMOS Setup Utility - Copyright (C) 1984-2004 Award Software PC Health Status		
Vcore DDR25U +3.3U +12U Current CPU Temperature Current CPU FAN Speed Current SYSTEM FAN Speed CPU Warning Temperature CPU FAN Fail Warning SYSTEM FAN Fail Warning	OK OK OK 34°C 2860 RPM 688 RPM [60°C/140°F] [Enabled] [Enabled]	Item Help Menu Level IDisabled I Don't monitor current temperature IGO°C-90°C I Alarm when current temperature over than the selected temperature
1↓++:Move Enter:Select +/-/PU/PD:Value F10:Save ESC:Exit F1:General Help F5:Previous Values F7: Optimized Defaults		

System (chassis) fan speed

What Have You Learned?

- Write down three things that you did not know before this chapter discussion started.
- Suggest a troubleshooting scenario that would result from
 - High voltage surge
 - Blocked air vents
 - Low facility voltage
 - Failed CPU fan
 - Poorly applied thermal compound

Chapter 4 Summary

Power Supplies:

- Describe the device that transforms AC power from the wall outlet into DC power that your computer can use.
- Describe the various form factors and voltage levels, and how to protect your power supply.

Power Protection Types:

Describe devices that can protect your computer from voltage extremes.

Troubleshooting Power Problems:

 Demonstrate how to troubleshoot complete failure and intermittent power supply problems that you might encounter.

System Cooling

Next Lesson: Chapter 5